BenchmarkingΒΆ

SummaryΒΆ

Benchmarking in LLM은 λŒ€ν˜• μ–Έμ–΄ λͺ¨λΈμ˜ μ„±λŠ₯을 ν‰κ°€ν•˜κΈ° μœ„ν•œ ν‘œμ€€ν™”λœ 절차λ₯Ό μ œκ³΅ν•©λ‹ˆλ‹€. 이 μ ˆμ°¨λŠ” λ‹€μ–‘ν•œ νƒœμŠ€ν¬μ™€ 데이터셋을 ν¬ν•¨ν•˜μ—¬ λͺ¨λΈμ˜ λŠ₯λ ₯을 μΈ‘μ •ν•˜κ³ , 이λ₯Ό 톡해 λͺ¨λΈ κ°„μ˜ 비ꡐ가 κ°€λŠ₯ν•΄μ§‘λ‹ˆλ‹€. Benchmarking은 LLM의 개발과 κ°œμ„ μ— μ€‘μš”ν•œ 역할을 ν•˜λ©°, μ‚¬μš©μžμ™€ κ°œλ°œμžκ°€ λͺ¨λΈμ˜ μ„±λŠ₯을 κ°κ΄€μ μœΌλ‘œ 평가할 수 μžˆλ„λ‘ λ„μ™€μ€λ‹ˆλ‹€.

Key ConceptsΒΆ

  • Benchmark Dataset : ν‘œμ€€ν™”λœ ν…ŒμŠ€νŠΈ μ„ΈνŠΈμ˜ λͺ¨μŒμœΌλ‘œ, LLM의 νŠΉμ • νƒœμŠ€ν¬ λ˜λŠ” μ‹œλ‚˜λ¦¬μ˜€μ—μ„œμ˜ μ„±λŠ₯을 ν‰κ°€ν•˜κΈ° μœ„ν•΄ μ‚¬μš©λ©λ‹ˆλ‹€.

  • LLM Evaluation Metrics : λͺ¨λΈμ˜ μ„±λŠ₯을 μΈ‘μ •ν•˜λŠ” μ§€ν‘œλ‘œ, 정확도, BLEU 점수, νΌν”Œλ ‰μ‹œν‹° 등이 ν¬ν•¨λ©λ‹ˆλ‹€.

  • Pre-production Evaluation : λͺ¨λΈμ΄ μ‹€μ œλ‘œ μ‚¬μš©λ˜κΈ° 전에 μˆ˜ν–‰λ˜λŠ” ν‰κ°€λ‘œ, λͺ¨λΈμ˜ μ„±λŠ₯κ³Ό μ•ˆμ •μ„±μ„ ν™•μΈν•©λ‹ˆλ‹€.

  • Post-production Evaluation : λͺ¨λΈμ΄ μ‹€μ œλ‘œ μ‚¬μš©λœ ν›„ μˆ˜ν–‰λ˜λŠ” ν‰κ°€λ‘œ, λͺ¨λΈμ˜ μ‹€μ œ μ„±λŠ₯κ³Ό μ‚¬μš©μž ν”Όλ“œλ°±μ„ ν™•μΈν•©λ‹ˆλ‹€.

  • Benchmark Leakage : λͺ¨λΈμ΄ 벀치마크 데이터셋과 λ™μΌν•œ λ°μ΄ν„°λ‘œ ν•™μŠ΅λ˜μ–΄, μ‹€μ œ μ„±λŠ₯이 κ³ΌλŒ€ν‰κ°€λ˜λŠ” ν˜„μƒμž…λ‹ˆλ‹€.

ReferencesΒΆ

URL 이름

URL

An Introduction to LLM Benchmarking - Confident AI

https://www.confident-ai.com/blog/the-current-state-of-benchmarking-llms

What are the most popular LLM benchmarks? - Symflower

https://symflower.com/en/company/blog/2024/llm-benchmarks/

An In-depth Guide to Benchmarking LLMs

Symbl.ai

What Are LLM Benchmarks? - IBM

https://www.ibm.com/think/topics/llm-benchmarks

LLM Benchmarks: Understanding Language Model Performance

Humanloop